Êtes vous prêt à faire reprogrammer votre ADN ?

ADN

Il y a encore quelques années, modifier le génome était un travail long, complexe et coûteux. Mais depuis trois ans, un nouvel outil d’une puissance et d’une précision sans précédent, baptisé CRISPR-CAS9, est en train de révolutionner la génomique. Il utilise un fragment d’ARN capable de guider le gène à insérer vers le site de l’ADN cible, et une enzyme nommée Cas9 coupe ce dernier pour y insérer le nouveau code souhaité.

Mais la rupture fondamentale que représente ce nouvel outil est ailleurs car, non content d’être bien plus rapide et précis que toutes les autres méthodes employées jusqu’alors, CRISPR-CAS9 possède également un champ d’application bien plus vaste qui va permettre aux scientifiques d’intervenir sur le génome de multiples espèces animales ou végétales, y compris l’espèce humaine…

C’est en 1987 que le scientifique japonais Atsuo Nakata (Université d’Osaka), découvre d’étranges séquences d’ADN répétitives dans le génome de bactéries Escherichia coli. Dans certaines parties de ces séquences, les quatre lettres constitutives de l’ADN – adénine (A), guanine (G), cytosine (C) et thymine (T) – forment des suites immédiatement suivies des mêmes suites en sens inverse : elles peuvent donc être lues dans les deux sens, comme dans les palindromes. En 2002, la communauté scientifique baptise ce type de séquences du nom de CRISPR (Clustered Regularly Interspaced Palindromic Repeats).

En 2005, d’autres recherches montrent que les morceaux d’ADN intercalés entre ces palindromes sont souvent des morceaux d’ADN de virus capables d’infecter les bactéries (bactériophages) et en 2007, des chercheurs de l’entreprise agroalimentaire danoise Danisco découvrent que certaines des bactéries qu’ils utilisent pour fabriquer des yaourts et des fromages survivent mieux aux infections virales lorsqu’elles possèdent des séquences CRISPR. Ces travaux montrent que ces bactéries sont capables de mémoriser dans leurs séquences CRISPR, l’ADN des virus les ayant préalablement infectés, ce qui leur permet de reconnaître immédiatement ces virus et de les éliminer quand elles les rencontrent à nouveau.

La suite est plus connue : un tandem constitué de deux chercheuses remarquables, l’Américaine Jennifer Doudna de l’Université californienne Berkeley, et la microbiologiste française Emmanuelle Charpentier qui travaille alors à l’Université suédoise d’Umeå ont réussi à comprendre les mécanismes à l’œuvre chez ces bactéries. Elles ont notamment découvert que les ADN viraux des séquences CRISPR sont dupliqués en plus petites molécules nommées ARN qui s’arriment à une enzyme nommée Cas9.

Ces chercheuses ont également montré que, lorsqu’un ARN bactérien rencontre un virus à l’ADN correspondant, il s’apparie à cet ADN, ce qui permet enfin à l’enzyme CAS9 d’éliminer ce virus en découpant les deux brins de son ADN.

S’appuyant sur ces découvertes fondamentales, ces scientifiques ont montré en 2012 que ce couple CRISPR-CAS9 permettait de couper une séquence spécifique d’ADN afin de la remplacer par une autre. Plus récemment, des modifications de Cas9 ont rendu possible l’inactivation ou l’activation de gènes spécifiques (Voir Science) et ce binôme CRISP-CAS9 a été désigné « découverte de l’année en 2013 par la prestigieuse revue « Sciences ».

Au cours de ces trois dernières années, de multiples recherches à travers le monde ont montré que l’outil CRISP-CAS9 pouvait modifier des gènes d’organismes très variés : bactéries, levures, riz, mouches, nématodes, poissons-zèbres, rongeurs, etc. En outre, cette méthode initiale a encore été améliorée récemment de manière à ce que l’enzyme Cas9 ne coupe pas le gène cible, mais stimule son expression, l’inhibe ou y substitue un autre gène.

En mars 2014, des chercheurs du MIT ont utilisé CRISPR-Cas9 pour corriger une maladie génétique incurable du foie : la « tyrosinémie » causée par une mutation génétique sur un gène nécessaire pour dégrader l’acide aminé nommé tyrosine. Résultat : chez des souris souffrant de cette pathologie, CRISPR-Cas9 a réussi à remplacer le gène déficient par sa forme saine dans environ 0,5 % des cellules du foie (hépatocytes). Au bout d’un mois, ces cellules redevenues saines avaient proliféré : elles représentaient un tiers de tous les hépatocytes… de quoi permettre aux souris de survivre sans le traitement de référence !

À l’été 2014, c’est à une autre maladie génétique incurable que s’attaquent les chercheurs : la « myopathie de Duchenne », une dégénérescence musculaire due à des mutations sur le gène codant pour la protéine indispensable au bon fonctionnement des fibres musculaires. À l’Université du Texas, des chercheurs parviennent à corriger cette mutation dans des embryons de souris, puis les réimplantent dans des mères porteuses. Neuf mois après leur naissance, parmi ceux chez lesquels la correction avait touché au moins 40 % des cellules, les muscles étaient parfaitement normaux !

Mais la puissance de l’outil commence à susciter des inquiétudes. En avril 2015, une équipe chinoise de l’Université Sun-Yat-sen de Canton s’est en effet servie de CRISPR-Cas9 pour tenter de modifier le génome d’un embryon humain. Certes, il s’agissait pour ces chercheurs de prévenir le développement d’une maladie génétique, la beta-thalassémie, en modifiant le génome d’un embryon humain. Reste que cette technique modifie également celui de ses cellules sexuelles et par conséquent, toute sa descendance potentielle.

Enfin, l’application au génome humain pourrait s’avérer plus simple encore que prévu. En effet, une équipe du MIT, dirigée par Feng Zhang a découvert un nouveau système de CRISPR basé non plus sur l’enzyme Cas9, mais sur une autre molécule, le Cpf1, beaucoup plus précis et plus adapté à l’usage sur les mammifères complexes (Voir Nature).

Mais pour s’en tenir uniquement au couple CRISPR-CAS9, il offre déjà un immense champ de recherche et d’action thérapeutique qui couvre tous les domaines de la biologie et de l’agronomie. L’année dernière par exemple, une équipe américaine du MIT à Boston a réussi, en utilisant un vecteur viral qui a transporté le gène de l’enzyme CAS9 et son ARN, à réduire de moitié en une semaine le taux de cholestérol chez des souris. Il y a quelques mois, une autre équipe américaine de l’Université Johns Hopkins à Baltimore, a réussi pour sa part à corriger, dans les cellules souches de sang, la mutation génétique responsable de l’anémie falciforme.

En agronomie, les perspectives d’utilisation de CRISPR-CAS9 sont tout aussi impressionnantes. L’année dernière, une équipe chinoise de l’Académie des sciences de Pékin a ainsi réussi à produire un blé tendre mutant qui résiste à un champignon parasite. Pour parvenir à ce résultat les chercheurs ont inactivé un gène de susceptibilité à ce champignon. Dans ce cas précis, ce résultat été obtenu en couplant CRISPR avec un autre ciseau moléculaire, TALEN. En fait, cette nouvelle panoplie d’outils génétiques ouvre des perspectives presque illimitées de recherche et d’intervention dans l’ensemble des sciences de la vie. Ces nouveaux outils vont notamment révolutionner à moyen terme l’agronomie et l’agriculture car ils permettent de réaliser des modifications génétiques ciblées en ayant uniquement recours à la séquence d’ADN souhaité et sans être obligé d’insérer des gènes étrangers. Les nouvelles plantes ainsi obtenues ne pourront plus être qualifiées de transgéniques puisqu’elles ne seront plus porteuses dans leur génome d’une séquence d’ADN étrangère à leur espèce. Dans le domaine animal, ces outils ouvrent la voie à une correction des maladies génétiques et une modification « à la carte » des cellules, tissus et organismes.

Mais alors que CRISPR-CAS9 se révèle être un nouvel outil extraordinaire dans les domaines de la Recherche et de l’intervention génétique et génomique, plusieurs découvertes fondamentales récentes sont venues bouleverser la conception que les scientifiques se faisaient jusqu’à présent de notre génome.

En août dernier, une équipe de généticiens suisses de l’Université de Genève (UNIGE), de l’École Polytechnique Fédérale de Lausanne (EPFL) et de l’Université de Lausanne (UNIL) a découvert que les variations génétiques sont en mesure d’affecter l’état du génome à de nombreux endroits, apparemment séparés, et de moduler l’activité des gènes un peu comme le ferait un chef d’orchestre coordonnant les instrumentistes pour qu’ils jouent en harmonie.

Au cœur de ce mécanisme subtil et global, la chromatine semble jouer un rôle essentiel. Découverte il y a plus d’un siècle, la chromatine, dont la structure moléculaire fine n’a été comprise qu’en 1997, est un ensemble de protéines et d’ADN qui « empactent » le génome dans une cellule. Comme l’ADN doit être décompacté pour pouvoir s’exprimer, cette chromatine reconfigure l’ADN de telle sorte qu’il puisse être « lu » par un groupe de protéines appelé facteurs de transcription, qui activent ou répriment l’expression des gènes.

La séquence d’ADN varie toutefois d’un individu à l’autre, entraînant ainsi une variation moléculaire entre les états de la chromatine des individus. Cela finit par causer des variations dans la manière dont les humains répondent à l’environnement. Comprendre les processus génétiques et moléculaires régissant la variabilité de la chromatine est l’un des défis les plus importants dans le domaine des sciences de la vie qui permettrait de découvrir comment les variations génétiques prédisposent les individus à certaines maladies comme le cancer, le diabète ou les maladies auto-immunes.

Ces travaux de pointe confirment que le génome est bien davantage qu’un ensemble linéaire d’éléments qui interagissent par paires ; il s’organise de manière complexe et en réseaux. Dans ce système, lorsqu’un élément ne remplit pas correctement sa tâche, c’est l’ensemble du génome qui s’en trouve perturbé. « Nous sommes en train de découvrir des règles biologiques de base sur le fonctionnement du génome et la manière dont les séquences régulatrices agissent ensemble pour impacter l’expression d’un gène, » précise le professeur Alexandre Reymond de l’Université de Lausanne.

Faisant écho à cette découverte, il y a quelques jours, une équipe américaine regroupant plusieurs universités et centres de recherche (Stanford, MIT, Université Rice et Baylor College de Houston), étudiant la structure tridimensionnelle de la chromatine dans le noyau cellulaire, a réussi, pour la première fois, à provoquer des réorganisations de cette structure grâce à la modification d’un très petit nombre de paires de bases d’ADN. En manipulant ces petites séquences d’ADN qui guident la structure spatiale du génome, ces chercheurs ont confirmé le rôle-clé de la chromatine dans le noyau cellulaire (Voir PNAS et phys.org). Ces scientifiques ont en outre développé un modèle mathématique qui permet de prévoir l’organisation et l’évolution du déploiement du génome humain.

Il faut également souligner qu’en septembre dernier, la revue scientifique Nature a publié une exceptionnelle série d’articles relatant les résultats du programme Encode : Encyclopedia of DNA Elements. Cette publication représente une quantité phénoménale d’informations – l’équivalent de 3 000 DVD – sur le génome humain considéré comme un ensemble global et cohérent. Lancé depuis 12 ans, ce programme pharaonique est mis en œuvre grâce à une coopération scientifique internationale qui regroupe plus de 400 scientifiques sous la direction des principales universités américaines.

Encode vise clairement à dépasser le programme historique de séquençage du génome humain qui s’est achevé il y a 15 ans. Jusqu’à la fin du siècle dernier, la plupart des biologistes pensaient, en effet, qu’il suffirait d’analyser de manière exhaustive les séquences de l’ADN  pour déchiffrer cette supposée information génétique. Mais force est de constater que les espoirs de ces scientifiques ont été largement déçus car la simple connaissance de cette information génétique, certes très précieuse, ne suffit pas, loin s’en faut, à comprendre la logique profonde du vivant et à provoquer la révolution thérapeutique que la médecine attendait pour pouvoir enfin traiter les nombreuses maladies génétiques.

Avec la publication récente de cette moisson impressionnante de données génétiques, les scientifiques sont à présent convaincus qu’étudier l’ADN en tant que tel n’a pas de sens. Dans les organismes vivants, l’ADN d’une cellule est toujours en interaction avec une multitude d’autres protéines dans une structure nommée chromatine. Or, il s’avère que ces interactions jouent un rôle absolument capital car elles décident si certaines protéines doivent être fabriquées ou pas.

Le programme Encode vise précisément à étudier avec un niveau de précision extrême ces interactions en nombre phénoménal. Cela suppose l’identification et le classement, à l’échelle du génome entier, de toutes les séquences de l’ADN et de toutes les protéines interagissant ensemble dans une cellule, de manière à activer certains gènes. Avec Encode, c’est bien une nouvelle vision du vivant qui émerge : la cellule peut être comparée à une mélodie harmonieuse et spécifique qui, pour être correctement exécutée, doit mettre en relation au bon endroit et au bon moment une partition correcte – l’ADN – et une multitude d’exécutants, dont le rôle est crucial puisqu’il leur revient d’interpréter et de traduire en musique mélodieuse cette partition génétique initiale.

Certes, les biologistes savaient déjà que nombreuses séquences d’ADN sont transcrites en ARN (acide ribonucléique), mais que ce processus est loin de toujours entraîner la production de protéines par la cellule. Encode montre que ce phénomène, loin d’être exceptionnel est très largement répandu dans la cellule, ce qui conforte sérieusement l’hypothèse selon laquelle les ARN possèdent des fonctions de régulation très importantes dans le fonctionnement du génome.

Ce changement de perspective théorique est considérable et nous oblige à rompre définitivement avec la représentation d’un niveau génétique qui serait « fondamental » et commanderait l’ensemble des mécanismes biologiques. Il semble au contraire que le vivant obéisse à un ensemble de mécanismes subtils, intriqués et circulaires dans lequel sont à l’œuvre d’extraordinaires processus d’action des parties sur le tout mais aussi du tout sur les parties.

L’ensemble de ces découvertes et avancées récentes ouvre un nouveau cadre théorique qui n’est pas sans rappeler celui de la physique quantique. Dans ce cadre conceptuel, processus et phénomènes aléatoires complètent et enrichissent considérablement des mécanismes déterministes, à commencer par le fameux « programme génétique ». La dimension épigénétique portant sur l’ensemble des modifications et changements provoqués par nos expériences personnelles, notre éducation, notre environnement social et culturel, devient centrale. L’un des exemples les plus remarquables de cette dimension épigénétique fondamentale est le processus de méthylation par lequel l’expression de notre ADN peut être profondément et définitivement modifiée par des facteurs environnementaux, une modification de notre mode de vie par exemple.

Cette nouvelle approche du génome conforte une nouvelle conception de l’homme dans laquelle l’individu se construit tout au long de sa vie, dans une myriade d’interactions avec le monde, et n’est jamais achevé, ni jamais réduit à l’une de ses dimensions constitutives, qu’elle soit biologique, psychique, sociale ou culturelle. Cette nouvelle vision de l’homme et du vivant rend caduque et artificielle l’opposition si longtemps érigée en dogme entre gènes et organisme, corps et esprit, inné et acquis.

Initialement publié sur RTflash, cet article est reproduit sur Übergizmo France avec l’aimable autorisation de René TRÉGOUËT, Sénateur Honoraire et fondateur du Groupe de Prospective du Sénat de la République Française.

Tags :
Dernières Questions sur UberGizmo Help
  1. pour vulgariser tout ça,,,,
    le chromosome C la Data-base, les genes C les Data,,,,,, et le Banquier C la Chromatine !
    et on beau savoir combien de $ ya a la banque, Tant con C pas ce que le banquier trafic, on nez pas sur 2 ce con a sur le conte ,,,,
    enfin,,,,,, j’me camprend !!!

    Ce commentaire a reçu trop de votes négatifs. Cliquez ici pour voir le message.
  2. Article clair et impeccable ; permettez moi de vous remercier René ! si l’on pouvais avoir un contenu de qualité , comme cela au quotidien sur Ubergizmo, il y’aurait davantage de lecteurs qui comme moi apprécie les véritable contenus scientifique pro, en dehors d’un simple copier- coller mal traduit d’un site anglophone…certain(e) se reconnaîtrons :)

    Note personnelle : est t’il possible pour les administrateur en charge du site de « supprimer tout les message de Futé²  » le troll-age sur quasi tout les articles à quand même des limites… en tant que lecteur je trouve cela préjudiciable.

  3. GRAND MARABOUT VOYANT POUR VOS PROBLEMES

    Je suis celui dont -on parle le grand Marabout Féticheur du Bénin Moustapha qui résout vos problème dans Honnêteté, efficacité et rapidité, discrétion à 100%. L’un des plus grands marabouts, voyants-médium d’Afrique noire est enfin près de chez vous.

    Dons hérités de père en fils, depuis 17 générations, grand professeur en sciences occultes
    40 ans d’expérience à la réputation mon

    diale. Il réussit là où les autres ont échoué, même cas désespérés.

    je peux intervenir dans touts les domaines
    Voici mes service :

    -Retour d’affection
    -Crise conjugal
    -Problème familiale
    -Protection contre tout mauvais sort ou dangers
    -Union rapide
    -Attirance des femme ou des hommes
    -Attirance de clientèle pour les vendeurs et les entreprises
    -AMOUR, CHANCE, REUSSITE dans tous les domaines
    -Retour immédiat d’affection et à l’amour définitif, quelque soit la durée, la raison ou les circonstances.
    -Désenvoûtement
    -Porte money magique . . .
    -Jeux du hasard, amaigrissement, contre tout mauvais sort et malchance.
    -Aide à retrouver le grand amour, la tendresse et la fidélité absolue.

    Voici mes contacte:

    Mail : vodounonpapa@gmail.com
    Mon numero :+229 97-72-46-18

  4. Franchement, une telle érection forte I avait 20 ans, et l’orgasme ne progresse pas autant que d’une demi-heure! Je ne sais pas qui était plus amusant, mais le matin, étaient tous heureux, heureux, et ne me souviens même pas à quel moment déconnecté hier. Avec les nuits passionnées relations entre nous permettra d’améliorer. Ma femme m’a arrêté de soupçonner l’infidélité, car il est maintenant pourvu d’au moins 3-4 aventure sexuelle dans une semaine, et je détendit et croit dans le fait que, dans 35 ans est encore trop tôt pour mettre sur les joies intimes de la croix, en dépit téléchargé au travail ou à la maison. Où acheter Macho Man à un prix abordable? Si vous voulez avoir des relations sexuelles de qualité, l’orgasme normal et un élément élastique, utiliser le spray pour les hommes Macho Man, qui est préférable d’acheter sur le site officiel du fournisseur du prix d’achat. J’ai commandé amené ici et a été heureux avec le produit: Tous les hommes veulent une puissance forte et confiante! Et la pension de let ne sera pas l’obstacle! Spray pour hommes Macho Man. Le principe de fonctionnement et la composition des fonds. Indications d’utilisation, les avantages et les contre-indications pour les hommes qui ont des problèmes avec la puissance, ont développé un unique dans sa composition et Vaporiser application de Macho Man . échecs sexuels vont maintenant rester à jamais dans le passé. Avec cet outil, vous pouvez restaurer leur puissance et obtenir une érection. Machoman vous donne l’occasion de découvrir l’orgasme vif et le plaisir de son partenaire dans un long rapport sexuel. Oubliez l’argent des dépenses constantes sur les pilules, à partir de laquelle érection se produit seulement 5-10 minutes.

    |

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Publicité